Next: How to manage your keys, Previous: Commands not specific to the function, Up: Commands [Contents][Index]
--sign
¶-s
Sign a message. This command may be combined with --encrypt (to sign and encrypt a message), --symmetric (to sign and symmetrically encrypt a message), or both --encrypt and --symmetric (to sign and encrypt a message that can be decrypted using a secret key or a passphrase). The signing key is chosen by default or can be set explicitly using the --local-user and --default-key options.
--clear-sign
¶--clearsign
Make a cleartext signature. The content in a cleartext signature is readable without any special software. OpenPGP software is only needed to verify the signature. cleartext signatures may modify end-of-line whitespace for platform independence and are not intended to be reversible. The signing key is chosen by default or can be set explicitly using the --local-user and --default-key options.
--detach-sign
¶-b
Make a detached signature.
--encrypt
¶-e
Encrypt data to one or more public keys. This command may be combined with --sign (to sign and encrypt a message), --symmetric (to encrypt a message that can be decrypted using a secret key or a passphrase), or --sign and --symmetric together (for a signed message that can be decrypted using a secret key or a passphrase). --recipient and related options specify which public keys to use for encryption.
--symmetric
¶-c
Encrypt with a symmetric cipher using a passphrase. The default
symmetric cipher used is AES-128, but may be chosen with the
--cipher-algo option. This command may be combined with
--sign (for a signed and symmetrically encrypted message),
--encrypt (for a message that may be decrypted via a secret key
or a passphrase), or --sign and --encrypt together
(for a signed message that may be decrypted via a secret key or a
passphrase). gpg
caches the passphrase used for
symmetric encryption so that a decrypt operation may not require that
the user needs to enter the passphrase. The option
--no-symkey-cache can be used to disable this feature.
--store
¶Store only (make a simple literal data packet).
--decrypt
¶-d
Decrypt the file given on the command line (or STDIN if no file is specified) and write it to STDOUT (or the file specified with --output). If the decrypted file is signed, the signature is also verified. This command differs from the default operation, as it never writes to the filename which is included in the file and it rejects files that don’t begin with an encrypted message.
--verify
¶Assume that the first argument is a signed file and verify it without generating any output. With no arguments, the signature packet is read from STDIN. If only one argument is given, the specified file is expected to include a complete signature.
With more than one argument, the first argument should specify a file with a detached signature and the remaining files should contain the signed data. To read the signed data from STDIN, use ‘-’ as the second filename. For security reasons, a detached signature will not read the signed material from STDIN if not explicitly specified.
Note: If the option --batch is not used, gpg
may assume that a single argument is a file with a detached signature,
and it will try to find a matching data file by stripping certain
suffixes. Using this historical feature to verify a detached
signature is strongly discouraged; you should always specify the data file
explicitly.
Note: When verifying a cleartext signature, gpg
verifies
only what makes up the cleartext signed data and not any extra data
outside of the cleartext signature or the header lines directly following
the dash marker line. The option --output
may be used to write
out the actual signed data, but there are other pitfalls with this
format as well. It is suggested to avoid cleartext signatures in
favor of detached signatures.
Note: To check whether a file was signed by a certain key the option
--assert-signer can be used. As an alternative the
gpgv
tool can be used. gpgv
is designed to
compare signed data against a list of trusted keys and returns with
success only for a good signature. It has its own manual page.
--multifile
¶This modifies certain other commands to accept multiple files for processing on the command line or read from STDIN with each filename on a separate line. This allows for many files to be processed at once. --multifile may currently be used along with --verify, --encrypt, and --decrypt. Note that --multifile --verify may not be used with detached signatures.
--verify-files
¶Identical to --multifile --verify.
--encrypt-files
¶Identical to --multifile --encrypt.
--decrypt-files
¶Identical to --multifile --decrypt.
--list-keys
¶-k
--list-public-keys
List the specified keys. If no keys are specified, then all keys from the configured public keyrings are listed.
Never use the output of this command in scripts or other programs. The output is intended only for humans and its format is likely to change. The --with-colons option emits the output in a stable, machine-parseable format, which is intended for use by scripts and other programs.
--list-secret-keys
¶-K
List the specified secret keys. If no keys are specified, then all
known secret keys are listed. A #
after the initial tags
sec
or ssb
means that the secret key or subkey is
currently not usable. We also say that this key has been taken
offline (for example, a primary key can be taken offline by exporting
the key using the command --export-secret-subkeys). A
>
after these tags indicate that the key is stored on a
smartcard. See also --list-keys.
--check-signatures
¶--check-sigs
Same as --list-keys, but the key signatures are verified and listed too. Note that for performance reasons the revocation status of a signing key is not shown. This command has the same effect as using --list-keys with --with-sig-check.
The status of the verification is indicated by a flag directly following the "sig" tag (and thus before the flags described below. A "!" indicates that the signature has been successfully verified, a "-" denotes a bad signature and a "%" is used if an error occurred while checking the signature (e.g., a non supported algorithm). Signatures where the public key is not available are not listed; to see their keyids the command --list-sigs can be used.
For each signature listed, there are several flags in between the signature status flag and keyid. These flags give additional information about each key signature. From left to right, they are the numbers 1–3 for certificate check level (see --ask-cert-level), "L" for a local or non-exportable signature (see --lsign-key), "R" for a nonRevocable signature (see the --edit-key command "nrsign"), "P" for a signature that contains a policy URL (see --cert-policy-url), "N" for a signature that contains a notation (see --cert-notation), "X" for an eXpired signature (see --ask-cert-expire), and the numbers 1–9 or "T" for 10 and above to indicate trust signature levels (see the --edit-key command "tsign").
--locate-keys
¶--locate-external-keys
Locate the keys given as arguments. This command basically uses the
same algorithm as used when locating keys for encryption and may thus
be used to see what keys gpg
might use. In particular
external methods as defined by --auto-key-locate are used to
locate a key if the arguments comain valid mail addresses. Only
public keys are listed.
The variant --locate-external-keys does not consider a locally existing key and can thus be used to force the refresh of a key via the defined external methods. If a fingerprint is given and and the methods defined by --auto-key-locate define LDAP servers, the key is fetched from these resources; defined non-LDAP keyservers are skipped.
--show-keys
¶This commands takes OpenPGP keys as input and prints information about
them in the same way the command --list-keys does for locally
stored key. In addition the list options show-unusable-uids
,
show-unusable-subkeys
, show-notations
and
show-policy-urls
are also enabled. As usual for automated
processing, this command should be combined with the option
--with-colons.
--fingerprint
¶List all keys (or the specified ones) along with their fingerprints. This is the same output as --list-keys but with the additional output of a line with the fingerprint. May also be combined with --check-signatures. If this command is given twice, the fingerprints of all secondary keys are listed too. This command also forces pretty printing of fingerprints if the keyid format has been set to "none".
--list-packets
¶List only the sequence of packets. This command is only useful for debugging. When used with option --verbose the actual MPI values are dumped and not only their lengths. Note that the output of this command may change with new releases.
--edit-card
¶--card-edit
Present a menu to work with a smartcard. The subcommand "help" provides an overview on available commands. For a detailed description, please see the Card HOWTO at https://gnupg.org/documentation/howtos.html#GnuPG-cardHOWTO . Please note that the command "openpgp" can be used to switch to the OpenPGP application of cards which by default are presenting another application (e.g., PIV).
--card-status
¶Show the content of the smart card.
--change-pin
¶Present a menu to allow changing the PIN of a smartcard. This functionality is also available as the subcommand "passwd" with the --edit-card command.
--delete-keys name
¶Remove key from the public keyring. In batch mode either --yes is required or the key must be specified by fingerprint. This is a safeguard against accidental deletion of multiple keys. If the exclamation mark syntax is used with the fingerprint of a subkey only that subkey is deleted; if the exclamation mark is used with the fingerprint of the primary key the entire public key is deleted.
--delete-secret-keys name
¶Remove key from the secret keyring. In batch mode the key must be
specified by fingerprint. The option --yes can be used to
advise gpg-agent not to request a confirmation. This extra
pre-caution is done because gpg
can’t be sure that the
secret key (as controlled by gpg-agent) is only used for the given
OpenPGP public key. If the exclamation mark syntax is used with the
fingerprint of a subkey only the secret part of that subkey is
deleted; if the exclamation mark is used with the fingerprint of the
primary key only the secret part of the primary key is deleted.
--delete-secret-and-public-key name
¶Same as --delete-key, but if a secret key exists, it will be removed first. In batch mode the key must be specified by fingerprint. The option --yes can be used to advise gpg-agent not to request a confirmation.
--export
¶Either export all keys from all keyrings (default keyring and those registered via option --keyring), or if at least one name is given, those of the given name. The exported keys are written to STDOUT or to the file given with option --output. Use together with --armor to mail those keys.
--send-keys keyIDs
¶Similar to --export but sends the keys to a keyserver.
Fingerprints may be used instead of key IDs.
Don’t send your complete keyring to a keyserver — select
only those keys which are new or changed by you. If no keyIDs
are given, gpg
does nothing.
Take care: Keyservers are by design write only systems and thus it is not possible to ever delete keys once they have been send to a keyserver.
--export-secret-keys
¶--export-secret-subkeys
Same as --export, but exports the secret keys instead. The
exported keys are written to STDOUT or to the file given with option
--output. This command is often used along with the option
--armor to allow for easy printing of the key for paper backup;
however the external tool paperkey
does a better job of
creating backups on paper. Note that exporting a secret key can be a
security risk if the exported keys are sent over an insecure channel.
The second form of the command has the special property to render the secret part of the primary key useless; this is a GNU extension to OpenPGP and other implementations can not be expected to successfully import such a key. Its intended use is in generating a full key with an additional signing subkey on a dedicated machine. This command then exports the key without the primary key to the main machine.
GnuPG may ask you to enter the passphrase for the key. This is required, because the internal protection method of the secret key is different from the one specified by the OpenPGP protocol.
--export-ssh-key
¶This command is used to export a key in the OpenSSH public key format. It requires the specification of one key by the usual means and exports the latest valid subkey which has an authentication capability to STDOUT or to the file given with option --output. That output can directly be added to ssh’s authorized_key file.
By specifying the key to export using a key ID or a fingerprint suffixed with an exclamation mark (!), a specific subkey or the primary key can be exported. This does not even require that the key has the authentication capability flag set.
--import
¶--fast-import
Import/merge keys. This adds the given keys to the keyring. The fast version is currently just a synonym.
There are a few other options which control how this command works. Most notable here is the --import-options merge-only option which does not insert new keys but does only the merging of new signatures, user-IDs and subkeys.
--receive-keys keyIDs
¶--recv-keys keyIDs
Import the keys with the given keyIDs from a keyserver.
--refresh-keys
¶Request updates from a keyserver for keys that already exist on the local keyring. This is useful for updating a key with the latest signatures, user IDs, etc. Calling this with no arguments will refresh the entire keyring.
--search-keys names
¶Search the keyserver for the given names. Multiple names given here will be joined together to create the search string for the keyserver. Note that keyservers search for names in a different and simpler way than gpg does. The best choice is to use a mail address. Due to data privacy reasons keyservers may even not even allow searching by user id or mail address and thus may only return results when being used with the --recv-key command to search by key fingerprint or keyid.
--fetch-keys URIs
¶Retrieve keys located at the specified URIs. Note that different installations of GnuPG may support different protocols (HTTP, FTP, LDAP, etc.). When using HTTPS the system provided root certificates are used by this command.
--update-trustdb
¶Do trust database maintenance. This command iterates over all keys and builds the Web of Trust. This is an interactive command because it may have to ask for the "ownertrust" values for keys. The user has to give an estimation of how far she trusts the owner of the displayed key to correctly certify (sign) other keys. GnuPG only asks for the ownertrust value if it has not yet been assigned to a key. Using the --edit-key menu, the assigned value can be changed at any time.
--check-trustdb
¶Do trust database maintenance without user interaction. From time to time the trust database must be updated so that expired keys or signatures and the resulting changes in the Web of Trust can be tracked. Normally, GnuPG will calculate when this is required and do it automatically unless --no-auto-check-trustdb is set. This command can be used to force a trust database check at any time. The processing is identical to that of --update-trustdb but it skips keys with a not yet defined "ownertrust".
For use with cron jobs, this command can be used together with --batch in which case the trust database check is done only if a check is needed. To force a run even in batch mode add the option --yes.
--export-ownertrust
¶Send the ownertrust values to STDOUT. This is useful for backup purposes as these values are the only ones which can’t be re-created from a corrupted trustdb. Example:
gpg --export-ownertrust > otrust.txt
--import-ownertrust
¶Update the trustdb with the ownertrust values stored in files
(or
STDIN if not given); existing values will be overwritten. In case of a
severely damaged trustdb and if you have a recent backup of the
ownertrust values (e.g., in the file otrust.txt), you may re-create
the trustdb using these commands:
cd ~/.gnupg rm trustdb.gpg gpg --import-ownertrust < otrust.txt
--rebuild-keydb-caches
¶When updating from version 1.0.6 to 1.0.7 this command should be used to create signature caches in the keyring. It might be handy in other situations too.
--print-md algo
¶--print-mds
Print message digest of algorithm algo for all given files or STDIN. With the second form (or a deprecated "*" for algo) digests for all available algorithms are printed.
--gen-random 0|1|2|16|30 count
¶Emit count random bytes of the given quality level 0, 1 or 2. If count is not given or zero, an endless sequence of random bytes will be emitted. If used with --armor the output will be base64 encoded. The special level 16 uses a quality level of 1 and outputs an endless stream of hex-encoded octets. The special level 30 outputs random as 30 zBase-32 characters.
--gen-prime mode bits
¶Use the source, Luke :-). The output format is subject to change with any release.
--enarmor
¶--dearmor
Pack or unpack an arbitrary input into/from an OpenPGP ASCII armor. This is a GnuPG extension to OpenPGP and in general not very useful. The --dearmor command can also be used to dearmor PEM armors.
--unwrap
¶This option modifies the command --decrypt to output the original message with the encryption layer removed. Thus the output will be an OpenPGP data structure which often means a signed OpenPGP message. Note that this option may or may not remove a compression layer which is often found beneath the encryption layer.
--tofu-policy {auto|good|unknown|bad|ask} keys
¶Set the TOFU policy for all the bindings associated with the specified keys. For more information about the meaning of the policies, see trust-model-tofu. The keys may be specified either by their fingerprint (preferred) or their keyid.
Next: How to manage your keys, Previous: Commands not specific to the function, Up: Commands [Contents][Index]